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Abstract
The problem of multiband k · p Hamiltonians describing the hole energy
structure of semiconductor nanosystems in a magnetic field is addressed. The
approximate formulation given previously by Luttinger [1] is revisited. We
show that interaction with a magnetic field enters into the multiband equations
for the envelope function components through the usual quadratic term and
two linear Zeeman terms. The first linear term corresponds to the envelope
angular momentum,while the other corresponds to the Bloch band-edge angular
momentum. Several approximate ways of including the magnetic field in a
four-band valence Hamiltonian are discussed and numerically compared.

The influence of a magnetic field on the electronic and optical properties of zero-dimensional
semiconductor nanostructures has been intensively studied for the last two decades [2, 3]. The
weaker quantum confinement and lighter electron effective mass than in atomic physics has
the result that in a strong magnetic field the energy of interaction with the field may exceed
the confinement energies and lead to the observation of effects that, for natural atoms would
require fields many orders of magnitude stronger than those accessible in the laboratory. The
vast majority of work has been devoted to investigating the energy structure of the conduction
band electrons. In such a case one usually solves the one-band effective mass equation for a
charged particle in a magnetic field. The Hamiltonian of such system is:

H = 1

2m
(p − eA)2 + V (r), (1)

where A is the vector potential of the magnetic field B and V (r) is a confining potential.
When B is applied in the z-direction and the symmetric gauge, ∇ · A = 0, is used for
A = (− 1

2 y, 1
2 x, 0)B , the Hamiltonian becomes:

H = p2

2m
− e

m
A · p +

e2

2m
A2 + V (r) = p2

2m
− eB

2m
L̂z +

e2 B2

8m
ρ2 + V (r). (2)
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In the one-band approximation the wavefunction � is just a product of the envelope function
f (r) and the Bloch function |u〉 = |S〉σ , with σ = α or β and |S〉 being a spherically
symmetric Bloch function.

When interaction with the remote bands is included, m is replaced by the effective mass
m∗. If the confining potential has axial (or spherical) symmetry the variables in the envelope
function separate, f (ρ, z, φ) = 1√

2π
eiMφ�(ρ, z), where M is the quantum number of L̂z .

Left-multiplying H� by 〈u|, integrating over the unit cell and over φ yields[
p2

2m∗ − eB M

2m∗ +
e2 B2

8m∗ ρ2 + V (ρ, z) − E

]
�(ρ, z) = 0, (3)

where we have employed L̂z |S〉 = 0 and thus 〈u|L̂z(|u〉| f 〉) = 〈u|u〉L̂z | f 〉 = L̂z | f 〉.
A two-dimensional version of this equation with a parabolic confining potential V (ρ) =

1
2 m∗ω2ρ2 is known as the Darwin–Fock equation and has so far been most frequently used to
model quasi-two-dimensional quantum dots. Equation (3) has also been used to investigate
the electron energy structure of spherical multilayer nanocrystals [4–6] and quantum dot
rings [7, 8].

The inclusion of the electron spin will lead to two additional terms: the spin Zeeman
energy gµBσ B (where g is the gyromagnetic factor and µB is the Bohr magneton) describing
the interaction of the spin with the magnetic field, and the spin–orbit term. The spin–orbit
term is usually neglected, since the conduction band is built of atomic s-type orbitals which
makes this interaction weak [2].

The valence-band energy structure of a given semiconductor nanosystem cannot be
properly described by a simple one-band effective mass equation. In such a case one has
to consider multiband k · p Hamiltonians that allow for valence subband mixing. In the most
general case, i.e., when there are N degenerate or energetically close bands, the one-electron
wavefunction in the envelope function approximation (EFA) is represented by:

�(r) =
N∑
i

ui fi (r), (4)

where ui are the Bloch band-edge functions and fi are the envelope function components [9].
To obtain the set of coupled differential equations (in a given k · p model) for the

envelope components one has to apply the one-particle Hamiltonian, equation (1), upon the
wavefunction (4), left-multiply by u j and integrate over the unit cell. In the eight-band model
(the one most widely used for the narrow-gap semiconductors), which couples the conduction,
heavy-hole, light-hole and split-off bands, the ui are usually chosen as the conventional
Luttinger–Kohn basis [9, 10] |(c/v), J, Jz〉 (J is the Bloch angular momentum and c/v means
conduction/valence band)

|c, 1
2 , 1

2 〉 = |S〉α
|c, 1

2 ,− 1
2 〉 = |S〉β

|v, 3
2 , 3

2 〉 = −1/
√

2|P+〉α
|v, 3

2 , 1
2 〉 = √

2/3|Z〉α − 1/
√

6|P+〉β
|v, 3

2 ,− 1
2 〉 = √

2/3|Z〉β + 1/
√

6|P−〉α
|v, 3

2 ,− 3
2 〉 = 1/

√
2|P−〉β

|v, 1
2 , 1

2 〉 = 1/
√

3|P+〉β + 1/
√

3|Z〉α
|v, 1

2 ,− 1
2 〉 = −1/

√
3|P−〉α + 1/

√
3|Z〉β

(5)
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where α, β are the spin functions, |P+〉 = |X〉 + i|Y 〉, |P−〉 = (|X〉 − i|Y 〉) and |X〉, |Y 〉, |Z〉
are the basis functions of the 
8 representation.

To check how the magnetic field influences the multiband k ·p equations for the envelope
components, we first apply the one-particle Hamiltonian (2) upon the wavefunction (4), left-
multiply by u j and integrate over the unit cell. Then, evaluate 〈u j |W (|ui〉| fi 〉), where |ui〉
belongs to the above basis set, equation (5), and W is the magnetic interaction term in the
one-particle Hamiltonian (2):

W = −eB L̂z

2m
+

e2 B2

8m
ρ2. (6)

The second (quadratic) term of equation (6) is purely multiplicative and is thus diagonal.
The integration over the unit cell in 〈u j |L̂z(|ui〉| fi 〉) yields,

〈u j |L̂z(|ui〉| fi 〉) = 〈u j |L̂z|ui〉| fi 〉 + δi j L̂ z | fi〉. (7)

Let us note, that the second term of equation (7) is also always diagonal. Consider now the
first term of equation (7). Since L̂z |S〉 = 0, L̂z |Z〉 = 0 and L̂z |P±〉 = ±|P±〉, one can
easily see, that the only non-diagonal terms are those coupling |v, 3

2 , 1
2 〉 and |v, 1

2 , 1
2 〉, on the

one hand, and |v, 3
2 ,− 1

2 〉 and |v, 1
2 ,− 1

2 〉, on the other hand. The value of ci j = 〈u j |Lz |ui〉
equals 1

3
√

2
in these two cases. The diagonal cii = ci factors are {0, 0, 1

2 , 1
6 ,− 1

6 ,− 1
2 , 1

3 ,− 1
3 }

for the consecutive subbands in equation (5). It is important to note that, in our formulation,
non-diagonal Zeeman terms appear only when the split-off band is present in the basis set,
equation (5), and such non-diagonal terms are always linear.

Let us now consider the special case of the 4-band valence Hamiltonian coupling only the
heavy-hole and light-hole subbands. If the investigated system has axial symmetry, i.e. if
V (r) = V (ρ, z), as it is the case of a magnetic field applied to spherical nanocrystals,
then the Hamiltonian commutes with the z-component Fz of the total angular momentum
F = J +L, where L is the envelope angular momentum and J is the Bloch band-edge angular
momentum [10] (J = 3/2 for the heavy and light holes bands). The axial symmetry also
allows us to write the envelope function components as: fi (ρ, z, φ) = 1√

2π
ei(Fz−Mi )φ fi (ρ, z),

where Mi are the quantum numbers of the z-components of the Bloch angular momentum of
the consecutive bands in question. In this case the magnetic interaction term is totally diagonal:

〈ui |L̂z(|ui〉| fi 〉) = (Fz − Mi )| fi 〉 + ci | fi 〉 (8)

and the magnetic field contribution to the resulting k · p Hamiltonian is also fully diagonal.
Let us note, that in the approximation formulated originally by Luttinger [1] and used next by
Pacheco et al [11], the magnetic interaction in a 4-band Hamiltonian is not diagonal. Later
we discuss the relationship between these two formulations. When finally the interaction with
remote bands is included, the magnetic interaction term (in au) is

Wi = − (Fz − Mi )B

2m∗ − ci B

2m∗ − B2ρ2

8m∗ , (9)

where m∗ is the absolute value of the heavy-hole or light-hole effective mass3. The last term
accounts for the usual quadratic effect. Since (Fz − Mi ) is equal to the z-component of the
envelope angular momentum, the first term of equation (9) is the orbital linear Zeeman effect
for the effective hole. It describes the influence of a magnetic field on the global properties
of the band-edge holes in a given zero-dimensional system. The second term corresponds to

3 In the present letter we use (γ1 ± 2γ )−1 as the HH and LH effective masses, with γ1 and γ being the Luttinger
parameters. However, as it can be seen in table 1, the mass coefficients in front of ρ and z derivatives are different. We
are currently exploring a possibility of using (γ1 ±γ )−1 or some average values as the magnetic field mass coefficients.
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the internal (or local) linear Zeeman effect associated with the Bloch angular momentum. It
describes the influence of the magnetic field on the local (in the unit cell) properties of the
valence-band holes. Hereafter we refer to the 4 × 4 Hamiltonian, including the magnetic
terms, as Hex . This Hamiltonian, written in cylindrical coordinates and for B = 0 is shown in
table 1. The magnetic interaction terms Wi are collected in table 2(a).

Since the multiband envelope equations describe the global properties of the holes in a
given zero-dimensional semiconductor system under the influence of a magnetic field, the
local Zeeman term should be, in principle, smaller than the global one. The approximate
Hamiltonian with the second term in Wi neglected is called Hgl . The (approximate) magnetic
terms of Hgl are collected in table 2(b). Yet another approximation has been employed in [4]
and [7] where the values (Fz − Mi ) + ci are averaged, i.e. replaced by Fz (see table 2(c)). We
call the corresponding Hamiltonian Hav.

Let us now discuss the relationship between the present derivation of the magnetic
interactions within the 4-band model and the approximation introduced originally by
Luttinger [1] and recently used by Pacheco et al [11]. In that approximation the interaction
with the magnetic field is added after the k · p and EFA are applied, while in our formulation
the interaction with a magnetic field is present already in the one-particle Hamiltonian (2).
In [11] the components of �p are replaced according to �p → �p − e �A in the original k · p EFA
Hamiltonian [9, 10]


−(P + Q) −iL −M 0

iL∗ −(P − Q) 0 −M
−M∗ 0 −(P − Q) iL

0 −M∗ −iL∗ −(P + Q)


 (10)

where

P = γ1

2
p2, Q = γ

2
(p2

⊥ − 2 p2
z ), L = −i

√
3γ3 pz p−, M =

√
3γ

2
p2

−,

p± = px ± ipy, p2
⊥ = p2

x + p2
y, p2 = p2

⊥ + p2
z , pα = −i∇α,

(11)

γ, γ1, γ3 are Luttinger parameters (γ3 = γ in the spherical approximation), α = x , y or z, and
ui are the Bloch functions.

One has to remember that �p in equation (10) acts only on the envelope part of the
wavefunction. It has a meaning of momentum, but is not equivalent to the momentum operator
in the Hamiltonian (1).

After the replacement �p → �p − e �A, i.e.

px → px − 1/2y B

py → py + 1/2x B

pz → pz,

(12)

the Hamiltonian is transformed to cylindrical coordinates (ρ, z, φ). The integration over
φ yields a set of four coupled differential equations in two variables (ρ, z). The resulting
Hamiltonian, HL is shown in table 3.

At a first sight, HL (see table 3) differs significantly from Hex (and thus from the
Hamiltonians Hgl and Hav): the magnetic interaction is not diagonal in HL . However, a
closer inspection reveals that they are not very different. In order to see the relationship
between them, let us consider the determinant of a 4 × 4 matrix


a − x 0 c 0

0 b − x 0 c
c 0 b − x 0
0 c 0 a − x


 (13)
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Table 1. Four-band k · p EFA valence Hamiltonian in cylindrical coordinates for B = 0 T.

(γ + γ1)

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (Fz − 1.5)2

ρ2

] √
3γ3

[
∂2

∂ρ∂z
+

Fz − 0.5

ρ

∂

∂z

]
−√

3
γ

2

[
∂2

∂ρ2
+

2Fz

ρ

∂

∂ρ
0

+
(γ1 − 2γ )

2

∂2

∂z2 + V (ρ, z) +
Fz(Fz − 1) − 0.75

ρ2

]

√
3γ3

[
∂2

∂ρ∂z
− Fz − 1.5

ρ

∂

∂z

]
(γ1 − γ )

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (Fz − 0.5)2

ρ2

]
0 −√

3
γ

2

[
∂2

∂ρ2
+

2(Fz + 1)

ρ

∂

∂ρ

+
(γ1 + 2γ )

2

∂2

∂z2
+ V (ρ, z) +

Fz(Fz + 1) − 0.75

ρ2

]

−√
3
γ

2

[
∂2

∂ρ2
− 2(Fz − 1)

ρ

∂

∂ρ
0

(γ1 − γ )

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (Fz + 0.5)2

ρ2

]
−√

3γ3

[
∂2

∂ρ∂z
+

Fz + 1.5

ρ

∂

∂z

]

+
Fz(Fz − 1) − 0.75

ρ2

]
+

(γ1 + 2γ )

2

∂2

∂z2
+ V (ρ, z)

0 −√
3
γ

2

[
∂2

∂ρ2
− 2Fz

ρ

∂

∂ρ
−√

3γ3

[
∂2

∂ρ∂z
− Fz + 0.5

ρ

∂

∂z

]
(γ + γ1)

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− (Fz + 1.5)2

ρ2

]

+
Fz(Fz + 1) − 0.75

ρ2

]
+

(γ1 − 2γ )

2

∂2

∂z2
+ V (ρ, z)
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Table 2. Diagonal magnetic interaction terms Wi corresponding to different k · p EFA Hamiltonians: (a) Hex , (b) Hgl and (c) Hav .

(a) −(γ1 − 2γ )

[
B2ρ2

8
+

(Fz − 1)B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

(Fz − 1
3 )B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

(Fz + 1
3 )B

2

]
−(γ1 − 2γ )

[
B2ρ2

8
+

(Fz + 1)B

2

]

(b) −(γ1 − 2γ )

[
B2ρ2

8
+

(Fz − 1.5)B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

(Fz − 0.5)B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

(Fz + 0.5)B

2

]
−(γ1 − 2γ )

[
B2ρ2

8
+

(Fz + 1.5)B

2

]

(c) −(γ1 − 2γ )

[
B2ρ2

8
+

Fz B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

Fz B

2

]
−(γ1 + 2γ )

[
B2ρ2

8
+

Fz B

2

]
−(γ1 − 2γ )

[
B2ρ2

8
+

Fz B

2

]
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Table 3. Four-band HL Hamiltonian.

(γ + γ1)

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ

√
3γ3

[
∂2

∂ρ∂z
+

Fz − 0.5 + 0.5Bρ2

ρ

∂

∂z

]
−√

3
γ

2

[
∂2

∂ρ2
+

2Fz + Bρ2

ρ

∂

∂ρ
0

− (Fz − 1.5 + 0.5Bρ2)2

ρ2

]
+

Fz(Fz − 1) − 0.75

ρ2
+ (Fz + 0.5)B

+
(γ1 − 2γ )

2

∂2

∂z2
+ V (ρ, z) +

B2ρ2

4

]

√
3γ3

[
∂2

∂ρ∂z
− Fz − 1.5 + 0.5Bρ2

ρ

∂

∂z

]
(γ1 − γ )

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
0 −√

3
γ

2

[
∂2

∂ρ2
+

2(Fz + 1 + 0.5Bρ2)

ρ

∂

∂ρ

− (Fz − 0.5 + 0.5Bρ2)2

ρ2

]
+

Fz(Fz + 1) − 0.75

ρ2
+ (Fz + 1.5)B

+
(γ1 + 2γ )

2

∂2

∂z2
+ V (ρ, z) +

B2ρ2

4

]

−√
3
γ

2

[
∂2

∂ρ2
− 2(Fz − 1) + Bρ2

ρ

∂

∂ρ
0

(γ1 − γ )

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
−√

3γ3

[
∂2

∂ρ∂z
+

Fz + 1.5 + 0.5Bρ2

ρ

∂

∂z

]

+
Fz(Fz − 1) − 0.75

ρ2
− (Fz + 0.5 + 0.5Bρ2)2

ρ2

]

+(Fz − 1.5)B +
B2ρ2

4

]
+

(γ1 + 2γ )

2

∂2

∂z2 + V (ρ, z)

0 −√
3
γ

2

[
∂2

∂ρ2
− 2Fz + Bρ2

ρ

∂

∂ρ
−√

3γ3

[
∂2

∂ρ∂z
− Fz + 0.5 + 0.5Bρ2

ρ

∂

∂z

]
(γ + γ1)

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ

+
Fz(Fz + 1) − 0.75

ρ2
− (Fz + 1.5 + 0.5Bρ2)2

ρ2

]

+ (Fz − 0.5)B +
B2ρ2

4

]
+

(γ1 − 2γ )

2

∂2

∂z2
+ V (ρ, z)



L74 Letter to the Editor

Table 4. Energies (meV) of the low-lying states with Fz = ±0.5 ± 1.5 ± 2.5 of a quantum ring in
a magnetic field (B = 5 and 10 T) obtained for the different Hamiltonians studied.

HL Hav Hgl Hex HL Hav Hgl Hex

Fz = −0, 5 B = 5 T Fz = +0, 5 B = 5 T

−51 −55 −54 −55 −42 −53 −53 −53
−60 −60 −60 −60 −55 −57 −57 −57
−62 −66 −66 −67 −58 −61 −59 −60
−63 −69 −67 −67 −62 −63 −65 −65
−66 −72 −71 −71 −66 −67 −65 −65

Fz = −0, 5 B = 10 T Fz = +0, 5 B = 10 T

−45 −58 −56 −56 −43 −54 −53 −54
−58 −64 −64 −64 −57 −57 −57 −57
−59 −72 −71 −72 −57 −62 −59 −60
−64 −75 −71 −72 −63 −65 −65 −67
−70 −76 −74 −75 −68 −68 −68 −68

Fz = −1, 5 B = 5 T Fz = +1, 5 B = 5 T

−54 −52 −51 −52 −47 −49 −50 −49
−55 −68 −67 −67 −58 −53 −52 −53
−61 −68 −67 −68 −60 −54 −55 −54
−64 −73 −71 −72 −63 −58 −57 −58
−65 −75 −74 −75 −66 −60 −61 −60

Fz = −1, 5 B = 10 T Fz = +1, 5 B = 10 T

−47 −55 −53 −53 −44 −46 −42 −45
−58 −74 −72 −72 −55 −48 −50 −50
−61 −75 −73 −74 −56 −50 −51 −51
−63 −77 −75 −76 −62 −55 −53 −54
−65 −82 −80 −81 −66 −57 −60 −59

Fz = −2, 5 B = 5 T Fz = +2, 5 B = 5 T

−57 −59 −58 −58 −52 −47 −45 −46
−57 −75 −74 −74 −61 −48 −50 −49
−61 −76 −74 −75 −62 −51 −50 −50
−66 −78 −77 −77 −66 −54 −56 −56
−67 −83 −82 −83 −71 −58 −57 −57

Fz = −2, 5 B = 10 T Fz = +2, 5 B = 10 T

−50 −64 −62 −62 −50 −34 −30 −32
−58 −84 −81 −82 −60 −37 −40 −38
−63 −84 −82 −83 −62 −44 −40 −42
−63 −88 −88 −88 −67 −46 −50 −48
−66 −91 −89 −89 −72 −52 −50 −51

which has the structure of the magnetic terms of HL . The roots of equation (13) are

x = a+b
2 ±

√
( a−b

2 )2 + c2. Taking

a = −(γ1 + γ )B2ρ2/8
b = −(γ1 − γ )B2ρ2/8
c2 = 3γ 2 B4ρ4/64,

(14)

which corresponds to the quadratic magnetic terms in HL , we get the roots x = −(γ1 ±
2γ )B2ρ2/8. They are equal to the diagonal quadratic terms in all of the other Hamiltonians.
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Next, independently we define

a = −(γ1 + γ )Fz B/2

b = −(γ1 − γ )Fz B/2

c2 = 3γ 2 F2
z B2/4

(15)

that yields the roots x = −(γ1 ± 2γ )Fz B/2. This is exactly the diagonal linear magnetic term
in Hav.

To check numerically the presented approximations we have performed calculations for
the InAs/GaAs quantum rings obtained in [8] and studied in [7] with the ‘volcano’ geometry,
a height of 1.6 nm, internal hole radius of 1 nm, external diameter 23 nm, a band offset of
60 meV and Luttinger parameters γ1 = 19.7 and γ = γ3 = 8.4. The energy levels of several
lowest hole states for Fz = ±0.5, ±1.5 and ±2.5 have been calculated for the magnetic fields
B = 5 and B = 10 T. The results are presented in table 4. One can see that the results obtained
with Hex , Hgl and Hav are very similar (the largest difference is about 2 meV). The highest
discrepancy appears for HL .

In conclusion, the influence of a magnetic field on the hole energy structure of zero-
dimensional semiconductor systems, represented by a four-band k · p Hamiltonian, has been
considered. We have shown that the effect of a magnetic field enters the k · p Hamiltonians
in a way similar to the one-band effective mass equation i.e. by linear and quadratic terms.
There are two linear terms: one associated with the envelope angular momentum (diagonal)
and another associated with Bloch band-edge angular momentum (also diagonal in the 4-
band model). The quadratic term is always diagonal. This makes the essential difference in
comparison with the Luttinger approximation, in which these terms are not diagonal. We have
discussed also several other approximations. Numerical analysis performed for a quantum-dot
ring shows, that they lead to qualitatively similar results.
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